• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE]

[LIMITE]

Mensagempor FERNANDA_03 » Sáb Jan 05, 2013 22:21

Não sei como faço para calcular o limite abaixo. Podem me ajudar?

\lim_{x\rightarrow 2}   x^3-5x^2+8x-4/x^4-5x-6
FERNANDA_03
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Jan 05, 2013 22:02
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE]

Mensagempor e8group » Dom Jan 06, 2013 00:16

Boa noite .

Vamos trabalhar no numerador .

A seguir vamos utilizar algumas propriedades ,dentre elas comutatividade,distributividade, e do elemento neutro da soma .

Ressaltando que , (sendo a,b,c números reais )

a + b   = b +a  = (a+b) + 0   = (a+b) + a + (-a)  = (b+a)  + b + (-b)  = (a+b )  + (b-a) + (-b +a )  ,  (a+b)c = ac + bc = ca + cb .
Então ,

x^3 -5x^2 + 8x - 4   =   +x^3 +(-4x^2 -2x^2 + x^2) + (4x +4x) - (2+2)

x^3 -5x^2 + 8x - 4  = ( x^3 - 2x^2) + (-2x^2 + 4x) + (-2x^2 +4x) +  x^2 - 4

x^3 -5x^2 + 8x - 4  = x^2(x-2) - 4x(x-2)  + (x-2)(x+2)

x^3 -5x^2 + 8x - 4  = (x-2)[x^2 - 4x + x + 2]

Quanto o denominador pode dividir ele por x - 2 ou fazer o mesmo método acima .Deixo como exercício para você .

Feito isto você , poderá simplificar o termo x- 2 que aparecerá no númerador e no denominador . Note que isto só é possível pois x - 2 \neq 0 para x \to 2 .

OBS.: Evite escrever desta forma ,recomendo que utilize os parênteses ( ) . Perceba que (a+b)/c = a/c + b/c .Já a+b/c , fica subtendido-se que é b/c + a . A segunda opção seria utilizar o comando \frac{a+b}{c} cujo resultado é \frac{a+b}{c}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE]

Mensagempor FERNANDA_03 » Dom Jan 06, 2013 00:25

Obrigada!
FERNANDA_03
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Jan 05, 2013 22:02
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.