• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por substituição] Ajuda, por favor?

[Integração por substituição] Ajuda, por favor?

Mensagempor Ronaldobb » Dom Dez 16, 2012 18:44

9. Use a técnica da substituição para calcular \int_{0}^{1}x(1-x)^ndx.

(Dica: u=1-x)

Minhas contas:

u=-x+1

du=-dx

x=-u+1

=\int_{0}^{1}(-u+1)u^n-du

=-1\int_{1}^{0}(-u+1)u^ndu

=\int_{1}^{0}-{u}^{n+1}+u^ndu

=-2\int_{1}^{0}{u}^{n+1}+u^ndu

=-2\frac{{u}^{n+2}}{n+2}+\frac{{u}^{n+1}}{n+1}

=-2\frac{{(-x+1)}^{n+2}}{n+2}+\frac{{(-x+1)}^{n+1}}{n+1}

Fazendo o Teorema Fundamental do Cálculo F(b)-F(a):

O meu resultado foi 0.

Estou correto?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Integração por substituição] Ajuda, por favor?

Mensagempor Ronaldobb » Dom Dez 16, 2012 18:45

A área do meu cálculo dessa Integral definida deu zero. Está certo?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Integração por substituição] Ajuda, por favor?

Mensagempor Ronaldobb » Dom Dez 16, 2012 18:47

O limites de integração são:

\int_{0}^{1}x(1-x)dx

Limite inferior igual a 0 e limite superior igual a 1
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.