- Pois bem, esta não é exatamente uma dúvida de um problema cuja resposta não consegui encontrar, mas sim uma curiosidade de minha pessoa. Meu professor lançou uma lista de exercícios de Regra da Cadeia e estou obcecado com um problema em particular, cuja resposta só consegui encontrar aplicando a Derivada do Produto mas não tive a mesma sorte aplicando a Derivada do Quociente. A questão é a seguinte:
Questão:

Tentativa pelo produto:




Para:







- O que bate com a resposta do Microsoft Mathematics.Tentativa por Quociente



Para:








- O que não bate nem com a resposta do Microsoft Mathematics, nem com a do gabarito.Gabarito
(Microsoft Mathematics) ou
(Professor)---------------------------------------------------------------------------------------------
Obrigado, desde já, pela atenção que sempre retribuem neste fórum. Abraços.
Ass: Matheus L. Oliveira.

.
e
, temos:
para aplicar a regra da cadeia e o zero que surge vem de
.
e como
então tomando
temos:
.
, isto é, "a constante sai fora da derivada"!. Tente fazer assim e veja se chega no mesmo resultado!
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.