• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Janela

[Cálculo] Janela

Mensagempor pires_ » Dom Dez 09, 2012 20:35

Uma janela tem a forma dum rectângulo encimado por um semicírculo com o diâmetro igual à base do rectangulo . A parte rectangular é de vidro transparente e a parte circular de vidro de cor que admite por m^2 metade da luz do vidro transparente . O perimetro total da janela é "P" . Determine , em função de "P" , as dimensões da janela que deixará entrar mais luz.
pires_
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Dez 09, 2012 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: ciências e tecnologia
Andamento: cursando

Re: [Cálculo] Janela

Mensagempor young_jedi » Seg Dez 10, 2012 10:35

um lado do retangulo mede x sendo este a base e tabem o diametro do semi-circulo, o outro ladó mede y
sendo assim a soma dos lados do retangulo com o semi-circulo sera dada pelo perimetro p

p=2y+x+\frac{\pi.x}{2}

da onde tiramos

y=\frac{p}{2}-\frac{x}{2}-\frac{\pi.x}{4}

agora calculando as areas do retangulo e do semi-circulo

A_r=x.y

A_r=x.\left(\frac{p}{2}-\frac{x}{2}-\frac{\pi.x}{4}\right)

e a do semi-circulo

A_c=\pi.\frac{x^2}{8}

vamos admitir que no semi-circrulo a quantidade de luz permitida seja q e no retangulo seja 2q, então a quantidade de luz total sera

Q(x)=q.\pi.\frac{x^2}{8}+2.q.x.\left(\frac{p}{2}-\frac{x}{2}-\frac{\pi.x}{4}\right)

Q(x)=q.\pi.\frac{x^2}{8}+q.x.p-q.x^2-\frac{q.\pi.x^2}{2}

para encontrar seu valor de maximo derivamos com relação a x e igualamos a zero

Q'(x)=\frac{q.\pi.x}{4}+q.p-q.2x-q.\pi.x

\frac{q.\pi.x}{4}+q.p-q.2x-q.\pi.x=0

como tudo esta multiplicado por q podemos simplificar

\frac{\pi.x}{4}+p-2x-\pi.x=0

p-2x-\frac{3\pi.x}{4}=0

x=\frac{p}{2+\frac{3\pi}{4}}

este é o valor de x agora voce tem que encontra y
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Cálculo] Janela

Mensagempor pires_ » Seg Dez 10, 2012 12:10

como encontro o y ?
pires_
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Dez 09, 2012 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: ciências e tecnologia
Andamento: cursando

Re: [Cálculo] Janela

Mensagempor young_jedi » Seg Dez 10, 2012 12:58

nas primeiras equações quando relaciona o perimietro com x e y, substitua o valor de x encontrado e ache y, lembr-se de que tanto x como y vão ficar em função de p.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?