por Fabio Wanderley » Dom Dez 09, 2012 20:32
Boa noite a todos,
Estou no início do estudo de Limites com duas variáveis. Vejam essa resolução de um exemplo do Guidorizzi (Um curso de Cálculo, vol. 2, 5 ed.).
Calcule, caso exista,

.
SoluçãoSeja
f(x,y) =

e tomemos

e

.

e

Logo,

não existe.
-----------------------------------------------------------------------------------------------------
Gostaria de saber se posso tomar também

e

.
Assim, terei

e

Portanto, o limite dado não existe.
Está correto?
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
por MarceloFantini » Dom Dez 09, 2012 23:54
Sim, está correto. Basta tomar dois caminhos distintos e mostrar que os limites são diferentes, quaisquer caminhos que sejam.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Fabio Wanderley » Seg Dez 10, 2012 10:55
MarceloFantini escreveu:Sim, está correto. Basta tomar dois caminhos distintos e mostrar que os limites são diferentes, quaisquer caminhos que sejam.
Obrigado! Creio que assimilei a ideia então.
-

Fabio Wanderley
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Sex Mar 23, 2012 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatística
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- duvida resolução de um limite
por Sara123 » Sex Fev 20, 2015 14:43
- 2 Respostas
- 1819 Exibições
- Última mensagem por adauto martins

Dom Fev 22, 2015 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4793 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite]Limite de uma funçao de varias variaveis
por TheKyabu » Seg Fev 04, 2013 22:01
- 3 Respostas
- 3474 Exibições
- Última mensagem por young_jedi

Ter Fev 05, 2013 19:47
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de duas variáveis
por hygorvv » Dom Jun 30, 2013 09:31
- 1 Respostas
- 2013 Exibições
- Última mensagem por Man Utd

Ter Jul 29, 2014 19:20
Cálculo: Limites, Derivadas e Integrais
-
- [limite]Limite de duas variaveis
por amigao » Seg Nov 25, 2013 18:14
- 4 Respostas
- 3287 Exibições
- Última mensagem por amigao

Ter Nov 26, 2013 19:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.