• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[COMPRIMENTO DE CURVAS] exercicios.

[COMPRIMENTO DE CURVAS] exercicios.

Mensagempor LuannLuna » Qui Nov 29, 2012 17:49

Bom galera,
tô com dificuldade em um exercício aqui.
- Calcule o comprimento da catenária \alpha(x) = (t,cosht) , t \in {R}, entre t = a e t = b.
Eu já cheguei em \int_{a}^{b}cosh^2t - tcosht.
Mas daqui eu não to conseguindo sair, essa parte de cosseno hiperbolico quebrou minhas pernas... ^^'
LuannLuna
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 29, 2012 14:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computação
Andamento: cursando

Re: [COMPRIMENTO DE CURVAS] exercicios.

Mensagempor young_jedi » Qui Nov 29, 2012 21:15

a integral do comprimento seria assim

\int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}dt

analisando a equação dada

x=t

\frac{dx}{dt}=1

y=cosh(t)

\frac{dy}{dt}=senh(t)

então

\int_{a}^{b}\sqrt{(1)^2+\left(senh(t)\right)^2}dt

da relação se seno hiperbolico e cosseno hiperbolico, nos sabemos que

cosh^2(t)-senh^2(t)=1

cosh^2(t)=1+senh^2(t)

substituindo na integral

\int_{a}^{b}\sqrt{cosh^2(t)}dt

\int_{a}^{b}senh(t)dt
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [COMPRIMENTO DE CURVAS] exercicios.

Mensagempor LuannLuna » Ter Dez 11, 2012 18:44

Putz man, verdade... eu tava fazendo errado mesmo...
Mesmo com a demora, vlw... deu um helpzao! xD
LuannLuna
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Nov 29, 2012 14:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.