• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral com fracões parciais

Integral com fracões parciais

Mensagempor menino de ouro » Seg Nov 26, 2012 21:43

nessa resolução :


\int_{}^{}\frac{-7+2x}{3+x^2}dx=


2\int_{}^{}\frac{x}{x^2+3}dx -7\int_{}^{}\frac{1}{x^2+3}dx




nessa abaixo ,eu me enrolo na resolução das contas ,porque não é resolvida da mesma forma que a primeira parte?


-7\int_{}^{}\frac{1}{x^2+3}dx

como resolvo passo a passo?
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral com fracões parciais

Mensagempor MarceloFantini » Ter Nov 27, 2012 00:56

A primeira integral pode ser resolvida por substituição, enquanto que a segunda você pode escrever

\int \frac{1}{x^2 +3} \, dx = \frac{1}{3} \int \frac{1}{\left( \frac{x}{\sqrt{3}} \right)^2 +1 } \, dx = \frac{1}{3} \arctan \left( \frac{x}{\sqrt{3}} \right) + C.

Tem que saber que \int \frac{1}{x^2 +1} \, dx = \arctan x + C.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.