• Anúncio Global
    Respostas
    Exibições
    Última mensagem

DERIVADAS PARCIAIS e continuidade - função é diferenciável?

DERIVADAS PARCIAIS e continuidade - função é diferenciável?

Mensagempor inkz » Seg Nov 26, 2012 20:37

Determine o conjunto dos pontos onde a função dada é diferenciavel. Justifique.

f(x,y) =

xy / x² + y² se (x,y) =/= (0,0)
0 se (x,y) = (0,0)

###########

Pessoal, por favor, verifiquem se o que pensei em fazer estaria correto.

Verificar se existem as derivadas parciais nos pontos, e onde são continuas. Onde essas forem contínuas, são os pontos de difereciabilidade da função.

Porém, antes de mais nada, como eu calculo as derivadas parciais no ponto (0,0)? Apenas via definição? Obrigado!!
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: DERIVADAS PARCIAIS e continuidade - função é diferenciáv

Mensagempor MarceloFantini » Seg Nov 26, 2012 21:39

Inkz, novamente, use LaTeX para suas fórmulas. É bem complicado ler suas expressões, facilitaria para todos.

Para resolver, calcule as derivadas parciais e verifiquem se elas são contínuas na origem. Faça os limites das derivadas e veja se elas tem o mesmo valor na origem. Se sim, a função é diferenciável na origem e portanto é contínua.

É possível que as derivadas parciais sejam diferentes mas que a função seja contínua, logo se não for este o caso comente. Use LaTeX!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: DERIVADAS PARCIAIS e continuidade - função é diferenciáv

Mensagempor inkz » Seg Nov 26, 2012 22:14

MarceloFantini escreveu:Inkz, novamente, use LaTeX para suas fórmulas. É bem complicado ler suas expressões, facilitaria para todos.

Para resolver, calcule as derivadas parciais e verifiquem se elas são contínuas na origem. Faça os limites das derivadas e veja se elas tem o mesmo valor na origem. Se sim, a função é diferenciável na origem e portanto é contínua.

É possível que as derivadas parciais sejam diferentes mas que a função seja contínua, logo se não for este o caso comente. Use LaTeX!


Olá Marcelo! Eu tentei usar o 'Editor de Fôrmulas' do editor de posts, mas não deu muito certo, então acabei deixando assim mesmo. Desculpe, tentarei usar nas próximas postagens.

Certo, calculo as derivadas parciais. Mas antes disso, como calculo derivada parcial para f(x,y) = 0?
Porque verificar a continuidade na origem?

Isso que falei está incorreto?:
Verificar se existem as derivadas parciais nos pontos, e onde são continuas. Onde essas forem contínuas, são os pontos de difereciabilidade da função.

Porque tem um teorema que diz que, para uma função é diferenciavel em p, se as derivadas parciais existem em p e estas são continuas em p. (a recíproca não é verdadeira);

abraços e obrigado pela resposta!!
inkz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Ter Nov 20, 2012 01:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: DERIVADAS PARCIAIS e continuidade - função é diferenciáv

Mensagempor MarceloFantini » Ter Nov 27, 2012 00:01

Como eu disse, tome o limite das derivadas parciais. Você pode também calcular o limite \lim_{h \to 0} \frac{ f(0+h, 0) - f(0,0)}{h}, analogamente para a outra coordenada.

O que você falou está correto, foi exatamente o que eu disse. Quando a função é diferenciável em um ponto ela é contínua, por isso disse pra verificar se elas existem e são contínuas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D