• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[ Integral ] Indireta

[ Integral ] Indireta

Mensagempor Paraujo » Qua Nov 21, 2012 20:35

Fala Galera!

Estou fazendo algumas deduções de Eletromagnetismo, e cheguei numa integral onde não consegui desenvolver:

\int_{}^{}\frac{dx}{{({a}^{2}+{x}^{2})}^{\frac{3}{2}}}

A dica nesse caso é que estamos tratando de um triângulo, onde eu posso substituir alguns termos:

\frac{x}{a} = tan \theta

Consegui encontrar uma identidade trigonométrica nessa transformação:

{sec}^{2}\theta = 1 + {tan}^{2}\theta

Depois daí eu não desenvolvi muita coisa...

Obrigado pela atenção,

Paulo
Paraujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 23, 2012 21:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando

Re: [ Integral ] Indireta

Mensagempor MarceloFantini » Qua Nov 21, 2012 23:50

Fazendo a substituição x= a \tan \theta segue que

(a^2 + x^2)^{\frac{3}{2}} = (a^2 + a^2 \tan^2 \theta)^{\frac{3}{2}}

= a^3 (1 + \tan^2 \theta)^{\frac{3}{2}} = a^3 \sec^3 \theta

e

dx = a \sec^2 \theta\, d \theta.

Voltando à integral temos

\int \frac{dx}{(a^2 + x^2)^{\frac{3}{2}}} = \int \frac{a \sec^2 \theta\, d \theta}{a^3 \sec^3 \theta}

= \frac{1}{a^2} \int \frac{d \theta}{\sec \theta} = \frac{1}{a^2} \int \cos \theta \, d \theta

= \frac{\sin \theta}{a^2} + C.

Como x = a \tan \theta, então x = a \frac{\sin \theta}{\cos \theta} e x^2 = a^2 \frac{\sin^2 \theta}{\cos^2 \theta} = a^2 \frac{\sin^2 \theta}{1 - \sin^2 \theta}, logo a^2 \sin^2 \theta = (1 - \sin^2 \theta) x^2 = x^2 - x^2 \sin^2 \theta.

Isolando \sin^2 \theta segue que \sin^2 \theta (a^2 +x^2) = x^2 e \sin^2 \theta = \frac{x^2}{a^2 + x^2}. Portanto \sin \theta = \frac{x}{\sqrt{a^2 + x^2}}.

Substituindo na resposta final,

\int \frac{dx}{(a^2 + x^2)^{\frac{3}{2}}} = \frac{x}{a^2 \sqrt{a^2 + x^2}} + C.

Você usou a substituição certa, só faltou prosseguir com as contas até o final. :y:
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [ Integral ] Indireta

Mensagempor Paraujo » Sex Nov 23, 2012 06:50

Perfeito Marcelo!!!

Muitissimo Obrigado!

Abraços :y:
Paraujo
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 23, 2012 21:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59