• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral por substituiçao (u.du)

integral por substituiçao (u.du)

Mensagempor menino de ouro » Seg Nov 19, 2012 16:23

pessoal da uma força nessa integral!


\int  \frac{x}{(9+x^2)^3/2}dx=
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral por substituiçao (u.du)

Mensagempor e8group » Seg Nov 19, 2012 20:27

Sua Integral seria esta \int \frac{x}{(9+x^2)^{\frac{3}{2} } }   dx ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: integral por substituiçao (u.du)

Mensagempor menino de ouro » Seg Nov 19, 2012 21:57

correto santhiago,é essa mesma, é que eu estou praticando o editor de formulas, entende!
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral por substituiçao (u.du)

Mensagempor e8group » Ter Nov 20, 2012 07:31

Tranquilo .

Fazendo , 9 + x^2 =  u   \implies     2x dx   =  du \implies  \frac{du}{2} = x dx .



\int  \frac{x}{(9+x^2)^{3/2}} dx =   \int \frac{1}{(u)^{3/2}} \cdot \frac{du}{2} du =   \frac{1}{2} \cdot  \int  u^{-3/2}  du


Consegue terminar ?



Qualquer coisa só postar .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: integral por substituiçao (u.du)

Mensagempor menino de ouro » Ter Nov 20, 2012 18:52

\frac{1}{2}.\int(u)^\frac{-3}{2}du= \frac{1}{2}.\frac{(u)^\frac{-3}{2}+1}{\frac{-3}{2}+1}=\frac{1}{2}.(-2)(u)^\frac{-1}{2}=-(u)^\frac{-1}{2}+c


ou , - \frac{1}{\sqrt[]{(u)}}+c , agora substituir o valor de (u) = 9+x^2


correto?

abs,
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral por substituiçao (u.du)

Mensagempor e8group » Ter Nov 20, 2012 20:08

Boa noite , é isso mesmo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: integral por substituiçao (u.du)

Mensagempor menino de ouro » Ter Nov 20, 2012 20:58

uma duvida aqui , -(u)^\frac{-1}{2} eu posso cancelar os dois sinal de menos? por sinal de + !
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral por substituiçao (u.du)

Mensagempor MarceloFantini » Ter Nov 20, 2012 21:45

Não, pois um é coeficiente e o outro é expoente.

Se ainda não está convencido, coloquei um número e compare as respostas: tome u=4. Então -(u)^{\frac{-1}{2}} = -(4)^{\frac{-1}{2}} = \frac{-1}{2}, enquanto que (u)^{\frac{1}{2}} = (4)^{\frac{1}{2}} = 2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron