• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral por substituiçao (u.du)

integral por substituiçao (u.du)

Mensagempor menino de ouro » Dom Nov 18, 2012 10:46

pessoal eu to com duvida nessa resolução que eu fiz será que esta correto?

\int \frac{x cos \sqrt[]{1+x^2}}{\sqrt[]{1+x^2}} dx = u = \sqrt[]{u} = \sqrt[]{1+ x^2}

du = \frac{x}{\sqrt[]{x^2+1}}  

\int xcos\sqrt[]{u}du = sen \sqrt[]{u}+c = sen\sqrt[]{1+x^2}+c
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral por substituiçao (u.du)

Mensagempor young_jedi » Dom Nov 18, 2012 10:54

se voce diz
que

u=\sqrt{1+x^2}

então du=\frac{x}{\sqrt{1+x^2}}dx

\int\frac{x}{\sqrt{1+x^2}}cos(\sqrt{1+x^2})dx=\int cos(u).du

=sen(u)+c=sen(\sqrt{1+x^2})+c
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.