• Anúncio Global
    Respostas
    Exibições
    Última mensagem

regra de 3! resolvam esse problema

regra de 3! resolvam esse problema

Mensagempor leandro moraes » Qui Jul 01, 2010 00:25

79 – ( CEFETQ – 1996 ) Uma frota de caminhões percorreu 3 000 km para transportar uma mercadoria, com velocidade média de 60 km/h, gastando 10 dias. Quantos dias serão necessários para que, nas mesmas condições, uma frota idêntica percorra 4 500 km com uma velocidade média de 50 km/h ?

pessoal, se puderem resolvam explicando ok!
leandro moraes
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Ter Jan 12, 2010 23:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: formado

Re: regra de 3! resolvam esse problema

Mensagempor Dan » Qui Jul 01, 2010 02:32

Essa é uma questão que envolve a regra de 3 composta. Sugiro que você estude proporcionalidade e regra de 3 para conseguir resolvê-la, pois não será nada fácil de você entender a minha explicação se suas noções não forem muito boas nesses conteúdos.

Iniciamos fazendo uma análise da proporcionalidade das grandezas envolvidas no problema. Devemos pensar da seguinte maneira: quanto mais quilômetros devem ser rodados, mais dias levará. Quanto menos velocidade empregada, mais dias levará. Assim, podemos perceber que a quantidade de quilômetros e dias são diretamente proporcionais (pois quando um aumenta, o outro aumenta) e que a velocidade e os dias são inversamente proporcionais (pois quando um diminui, o outro aumenta e vice e versa).

Todas essas grandezas devem ser submetidas a uma constante de proporcionalidade, que será indicada por "k". A velocidade em quilômetros é "v", a quantidade de quilômetros será "l" e a quantidade de dias será "d":

d=k.\left( \frac{l}{v} \right)

Perceba que a grandeza diretamente proporcional aos dias, que é a quantidade de quilômetros, está no numerador. E a grandeza inversamente proporcional, que é a velocidade, está no denominador. Isso se deve justamente à questão da proporcionalidade.

A partir desta equação, nós aplicamos os dados que conhecemos para descobrir a constante de proporcionalidade:

10=k.\left( \frac{3000}{60} \right)

Fazendo as devidas manipulações algébricas, chegaremos à conclusão de que k=\frac{1}{5}.

Esta é a constante de proporcionalidade, que você deve substituir na equação, para deixá-la completa:

d=\frac{1}{5}.\left( \frac{l}{v} \right)

Aí você pode substituir qualquer distância l e qualquer velocidade v para determinar a quantidade de dias.

No caso do seu exercício, a resposta será 18 dias.

Dúvidas, comente.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}