por rstoque » Seg Jun 04, 2018 17:29
Estou com uma dúvida a respeito da resolução deste limite, pois quando eu tento resolvê-lo eu me confundo na hora de utilizar produtos notáveis no numerador.

Eu poderia desmembrar o numerador desta função assim...

???
estou agarrado nessa resolução porque não estou concordando com ela, mas ao mesmo tempo ela faz sentido aff
desde já agradeço pessoal, abraços
-
rstoque
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Jun 04, 2018 17:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITES] - LIMITES DE DUAS VARIAVEIS
por Jol » Ter Fev 26, 2013 19:33
- 1 Respostas
- 1887 Exibições
- Última mensagem por young_jedi

Qua Fev 27, 2013 18:43
Cálculo: Limites, Derivadas e Integrais
-
- Limites duas variaveis
por Razoli » Qui Jul 03, 2014 23:22
- 2 Respostas
- 2464 Exibições
- Última mensagem por Razoli

Qui Jul 03, 2014 23:41
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Função de duas variáveis
por Sohrab » Ter Abr 23, 2013 03:18
- 7 Respostas
- 6515 Exibições
- Última mensagem por brunno10

Qua Mai 01, 2013 00:28
Cálculo: Limites, Derivadas e Integrais
-
- Limites de funções com varias variáveis
por Fernandobertolaccini » Qua Dez 17, 2014 10:49
- 1 Respostas
- 3543 Exibições
- Última mensagem por Molina

Qua Dez 17, 2014 13:59
Cálculo: Limites, Derivadas e Integrais
-
- Limites de funções com varias variáveis
por Fernandobertolaccini » Qua Dez 17, 2014 10:56
- 1 Respostas
- 3058 Exibições
- Última mensagem por Molina

Qua Dez 17, 2014 14:08
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.