por Fred Pellegrini » Sex Out 28, 2016 18:21
Como provar os seguintes limites pela definição?
a) Lim (x² - 2x + 1) = 1
x->2
b) lim (x² + 4x + 4) = 1
x->-1
c) lim (3x² - 7x +2) = -2
x->1
-
Fred Pellegrini
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Out 28, 2016 18:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por adauto martins » Seg Out 31, 2016 10:14
essa questao eu ja resolvi ela uma pa de vezes,mas vamos a mais uma:
definiçao formal de limite:

dado um

,existe pelo menos um

(existem ifinitos deltas,por que?),tal que satisfaça a:

...entao vamos a questao a),as outras ficam como exercicios...

:
entao dado um

,existe pelo um

,

...esse

tera q. ser em funçao do

dado,ou seja:

e geralmente,escolhe-se o menor

,ou seja
![\delta =min[{\delta}_{1},{\delta}_{2},...] \delta =min[{\delta}_{1},{\delta}_{2},...]](/latexrender/pictures/d4247bbef86a62e625a9a6c176f73ffc.png)
...agora vamos ao calculo...temos q.

e q.

,como

,logo temos q.

...resolvendo essa inequaçao,encontraremos dois deltas...
![{\delta}_{1}=\sqrt[]{1+\varepsilon}-1,{\delta}_{2}=\sqrt[]{1+\varepsilon}+1... {\delta}_{1}=\sqrt[]{1+\varepsilon}-1,{\delta}_{2}=\sqrt[]{1+\varepsilon}+1...](/latexrender/pictures/3ab1e8b9e36a928ae2654c9f0fc5400a.png)
...vamos tomar

...logo,teremos:
![\left|({x}^{2}-2x+1)-1 \right|=\left|{x}^{2}-2x \right|\preceq\left|x \right|.\left|x-2 \right|\prec (\delta+2).\delta={\delta}^{2}+2.\delta={(\sqrt[]{\varepsilon+1}-1})^{2}+2.(\sqrt[]{\varepsilon+1})=...\prec \varepsilon \left|({x}^{2}-2x+1)-1 \right|=\left|{x}^{2}-2x \right|\preceq\left|x \right|.\left|x-2 \right|\prec (\delta+2).\delta={\delta}^{2}+2.\delta={(\sqrt[]{\varepsilon+1}-1})^{2}+2.(\sqrt[]{\varepsilon+1})=...\prec \varepsilon](/latexrender/pictures/244cca570e64f5ff9db7f6639bd3d9fb.png)
...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites pela definição formal
por joaofonseca » Ter Out 11, 2011 09:38
- 1 Respostas
- 2657 Exibições
- Última mensagem por joaofonseca

Qua Out 12, 2011 19:29
Cálculo: Limites, Derivadas e Integrais
-
- Limites pela definição formal
por ramoncampos » Ter Nov 01, 2016 21:20
- 4 Respostas
- 9339 Exibições
- Última mensagem por ramoncampos

Sex Nov 04, 2016 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Limites pela definiçao
por JoaoLuiz07 » Qui Ago 27, 2015 16:55
- 1 Respostas
- 1677 Exibições
- Última mensagem por adauto martins

Sáb Ago 29, 2015 20:52
Cálculo: Limites, Derivadas e Integrais
-
- Derivada pela Definiçao
por PeIdInHu » Sáb Mai 22, 2010 17:24
- 1 Respostas
- 2109 Exibições
- Última mensagem por admin

Sáb Mai 22, 2010 18:24
Cálculo: Limites, Derivadas e Integrais
-
- Integral pela definição
por ARCS » Sáb Abr 09, 2011 15:49
- 1 Respostas
- 1433 Exibições
- Última mensagem por LuizAquino

Dom Abr 10, 2011 13:33
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.