por mpborto » Sex Mar 18, 2016 15:29
Sabendo que lim x?0 (1+x)^1/x=e, e que b>0 é correto afirmar que o limite lim x?0 (1+bx)^1/x, eu tenho um teste online pra resolver até domingo e teve apenas duas questões que não foram explicadas em sala, eu não tenho idéia de como resolver esse número de euler.
-
mpborto
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mar 18, 2016 15:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Contábeis
- Andamento: cursando
por adauto martins » Sex Mar 18, 2016 17:28
faz-se

,logo...

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Número de Euler
por Aliocha Karamazov » Sex Out 28, 2011 20:16
- 2 Respostas
- 4214 Exibições
- Última mensagem por Aliocha Karamazov

Sex Out 28, 2011 22:46
Cálculo: Limites, Derivadas e Integrais
-
- Prova da irracionalidade do número de Euler
por Douglas16 » Dom Mar 10, 2013 17:38
- 2 Respostas
- 1319 Exibições
- Última mensagem por e8group

Dom Mar 10, 2013 20:20
Funções
-
- [Limites] Limites exponenciais com euler.
por yuricastilho » Ter Abr 15, 2014 14:30
- 2 Respostas
- 2161 Exibições
- Última mensagem por yuricastilho

Qui Mai 01, 2014 16:28
Cálculo: Limites, Derivadas e Integrais
-
- Função de Euler
por Crist » Seg Dez 02, 2013 09:06
- 4 Respostas
- 3575 Exibições
- Última mensagem por Bravim

Sex Dez 06, 2013 03:03
Teoria dos Números
-
- Limite + algarismo de Euler = ????
por EulaCarrara » Seg Abr 19, 2010 21:29
- 5 Respostas
- 3869 Exibições
- Última mensagem por MarceloFantini

Seg Abr 19, 2010 23:11
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.