• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mínimos e Máximos, dificuldade em determinar derivadas

Mínimos e Máximos, dificuldade em determinar derivadas

Mensagempor letciabr7 » Qua Jun 10, 2015 17:44

[Máximos e Mínimos] Determine o valor de x no intervalo [0, 4], tal que retângulo com vértices da
base em (x, 0) e (?x, 0) e os outros dois vértices na parte da elipse x²/16+y²/9=1, com
y > 0, tenha área máxima. Estou com dificuldade de determinar a derivada da área para achar os mínimos e máximos, ja que o valor da altura do retângulo está dando um negócio estranho.
letciabr7
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mai 09, 2015 16:35
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em arquitetura e urbanismo
Andamento: cursando

Re: Mínimos e Máximos, dificuldade em determinar derivadas

Mensagempor nakagumahissao » Ter Out 06, 2015 09:05

A resolução poderá ser encontrada em:

http://matematicaparatodos.pe.hu/2015/1 ... m-elipses/


Se ainda estiver interessado na solução do problema.



Grato


Sandro
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.