• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivada parcia]

[derivada parcia]

Mensagempor andersonsg » Seg Jun 15, 2015 15:17

Bom dia.

Estou levando uma surra deste exercício, se alguém puder me ajudar eu agradeço.

Calcular a derivada parcial em relação a y da f(x,y) = \frac{1}{r}(\frac{-y}{2} + \frac{x}{2} \sqrt[2]{\frac{4{r}^{2}}{{x}^{2}+{y}^{2}}-1}).

Obrigado.
andersonsg
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 15, 2015 13:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrica
Andamento: cursando

Re: [derivada parcia]

Mensagempor nakagumahissao » Sáb Jul 18, 2015 11:33

f(x,y) = \frac{1}{r}(\frac{-y}{2} + \frac{x}{2} \sqrt[2]{\frac{4{r}^{2}}{{x}^{2}+{y}^{2}}-1})

Supondo-se que r seja uma constante (não se encontra esta informação no enunciado), mas percebe-se que deva ser uma constante por causa da definição da função dada.

Desta maneira, a derivada parcial com relação à y seria derivar a função dada, considerando o x como sendo um "constante". Assim, vamos reescrever a função para facilitar as contas:

f(x,y) = -\frac{y}{2r} + \frac{x}{2r}\left(\frac{4r^2}{x^2 + y^2} - -1 \right)^{1/2}

Derivando com relação à y, teremos:

\frac{\partial f}{\partial y} = -\frac{1}{2r} + \frac{x}{2r}\frac{1}{2}\left(\frac{-2y(4r^2)}{{(x^2 + y^2)}^{2}} \right)\left(\frac{4r^2}{x^2 + y^2} - 1 \right) ^{-1/2}

\frac{\partial f}{\partial y} = -\frac{1}{2r} + \frac{x}{4r}\left[\frac{-8r^2 y}{{(x^2 + y^2)}^{2}} \right]\frac{1}{\left(\frac{4r^2}{x^2 + y^2} - 1 \right) ^{1/2}}

\frac{\partial f}{\partial y} = -\frac{1}{2r} - x\left[\frac{2r y}{{(x^2 + y^2)}^{2}} \right]\frac{1}{\sqrt[]{\frac{4r^2}{x^2 + y^2} - 1}}
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)