• Anúncio Global
    Respostas
    Exibições
    Última mensagem

L'Hôpital - Por que o limite não existe?

L'Hôpital - Por que o limite não existe?

Mensagempor tiago_28 » Ter Mai 19, 2015 20:10

Aplicando a Regra de L'Hôpital no limite abaixo estou encontrando \frac {-1}{3}, mas o gabarito informa que o limite não existe

\lim_{x\rightarrow0} \frac {ln(1+x) - x - \frac{x^2}{2} - \frac{x^3}{6}} {x^3}

Como mostrar que esse limite não existe? Lembrando que preciso calcular isso usando L'Hôpital.
tiago_28
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 19, 2015 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

y

Mensagempor lucas7 » Qua Mai 20, 2015 20:45

Aplicando L'Hopital, a primeira derivada dessa função é:
d/dx((log(1+x)-x-x^2/2-x^3/6)/x^3) = (x (x^2+5 x+6)-6 (x+1) log(x+1))/(2 x^4 (x+1))

derivando de novo:
d/dx((x (x^2+5 x+6)-6 (x+1) log(x+1))/(2 x^4 (x+1))) = (12 (x+1)^2 log(x+1)-x (x^3+8 x^2+20 x+12))/(x^5 (x+1)^2)

sucessivamente:
d/dx((12 (x+1)^2 log(x+1)-x (x^3+8 x^2+20 x+12))/(x^5 (x+1)^2)) = (x (3 x^4+33 x^3+128 x^2+156 x+60)-60 (x+1)^3 log(x+1))/(x^6 (x+1)^3)

Assim, verifica-se que mesmo aplicando L'Hopital inúmeras vezes esse limite tende a um quociente de zeros. (Pois sempre haverá x no numerador e denominador)
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?