por BrDias » Sex Fev 20, 2015 10:18
Ola amigos, como vao ?
esse é meu primeiro, espero que esteja no lugar e do jeito certo, com uma dúvida bem besta mas...
recebi a seguinte integral definida para resolver.
![\int_{1}^{2}\sqrt[]{x}.dx \int_{1}^{2}\sqrt[]{x}.dx](/latexrender/pictures/483b3d20ab436377dc072df41e887e29.png)
Resolvi da seguinte forma:
![\int_{1}^{2}\sqrt[]{x}.dx = \int_{1}^{2}{x}^{1/2} = \frac{{x}^{3/2}}{3/2} = \frac{2}{3}.{x}^{3/2} = \frac{2{X}^{3/2}}{3} = \int_{1}^{2}\frac{2\sqrt[]{x^3}}{3} \int_{1}^{2}\sqrt[]{x}.dx = \int_{1}^{2}{x}^{1/2} = \frac{{x}^{3/2}}{3/2} = \frac{2}{3}.{x}^{3/2} = \frac{2{X}^{3/2}}{3} = \int_{1}^{2}\frac{2\sqrt[]{x^3}}{3}](/latexrender/pictures/04f8a4a2fd98562fe3827485be88bbab.png)
chegando neste ponto, apliquei os limites e meu resultado sinal foi?
![\frac{4\sqrt[]{2}}{3} - \frac{2}{3} \frac{4\sqrt[]{2}}{3} - \frac{2}{3}](/latexrender/pictures/2a85a8abc62e59bba28275e6bf4fcc8e.png)
gostaria de uma avaliação de vocês, parece besta e deve ser mas fiquei na dúvida se esta correto.
desde já agradeço a atenção
grande abraco
-
BrDias
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Fev 20, 2015 09:45
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Russman » Sáb Fev 21, 2015 01:16
Sim. Mas no último passo não se coloca mais o simbolo de integral definida.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (ESPCEX)duvida ""besta"'
por natanskt » Sex Nov 26, 2010 17:32
- 3 Respostas
- 4074 Exibições
- Última mensagem por DanielFerreira

Qua Dez 01, 2010 17:07
Matrizes e Determinantes
-
- Duvida Integral Definida
por douglasnickson » Dom Jul 03, 2016 01:39
- 5 Respostas
- 14446 Exibições
- Última mensagem por adauto martins

Ter Jul 05, 2016 15:25
Cálculo: Limites, Derivadas e Integrais
-
- [integral definida] - dúvida em exercício
por natanaelskt » Qua Jul 02, 2014 02:13
- 1 Respostas
- 1846 Exibições
- Última mensagem por e8group

Qua Jul 02, 2014 14:04
Cálculo: Limites, Derivadas e Integrais
-
- [Integração Definida] dúvida em integral com u.du
por Nicolas1Lane » Sáb Ago 30, 2014 20:36
- 3 Respostas
- 3273 Exibições
- Última mensagem por DanielFerreira

Dom Set 07, 2014 21:35
Cálculo: Limites, Derivadas e Integrais
-
- Duvida numa funçao definida por ramos
por AnaOliveira » Sáb Abr 30, 2011 16:54
- 12 Respostas
- 7052 Exibições
- Última mensagem por NMiguel

Dom Mai 01, 2011 19:35
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.