• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Diferencial de uma função com várias variáveis

Diferencial de uma função com várias variáveis

Mensagempor Fernandobertolaccini » Qui Dez 25, 2014 18:16

Duas resistências elétricas R1 e R2 estão ligadas em paralelo, ou seja, a resistência equivalente R é dada por\frac{1}{R}=\frac{1}{R1}+\frac{1}{R2} Supondo que R1= 30 ohms e R2 = 50 ohms , calcule a variação de R se:

a) R1 aumenta de 0,03 ohms e R2 diminui de 0,05 ohms
b) R1 diminui de 0,07 ohms e R2 aumenta de 0,04 ohms .




Resp: a) dR = 0,0047 ohms

b) dR = -0,022 ohms


Como chego neste resultado?


Obrigado !
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Diferencial de uma função com várias variáveis

Mensagempor adauto martins » Sex Dez 26, 2014 12:00

R={R}_{1}.{R}_{2}/({R}_{1}+{R}_{2})\Rightarrow \Delta R=R({R}_{1}+d{R}_{1},{R}_{2}+d{R}_{2})-R({R}_{1},{R}_{2})...
a)\Delta R=(30+0.03,50-0.05)-(30,50)=(30.03).(49.95)/(30.03+49.95)-(30.50/80)\simeq 18.75466991-18.75=0.0047
b)analogo a a)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Diferencial de uma função com várias variáveis

Mensagempor Russman » Sáb Dez 27, 2014 00:21

De fato, dada uma função f=f(x,y),

\mathrm{d}f = \frac{\partial f}{\partial x} \ \mathrm{d} x + \frac{\partial f}{\partial y} \ \mathrm{d} y.

Daí, como a função "resistência equivalente" R é função das duas resistências R_1 e R_2, então

\mathrm{d} R = \frac{\partial R}{\partial R_1} \ \mathrm{d} R_1 + \frac{\partial R}{\partial R_2} \ \mathrm{d} R_2.

Calculando as derivadas parciais você concluirá que, após aplicar a derivação da função composta e , em seguida, da cadeia,

\frac{\partial R}{\partial R_1} = \frac{R^2}{R_1^2}

\frac{\partial R}{\partial R_2} = \frac{R^2}{R_2^2}

e, portanto,

\mathrm{d} R = R^2\left (\frac{ \mathrm{d} R_1}{R_1^2} + \frac{ \mathrm{d} R_2}{R_2^2}  \right )

A resistência equivalente é 18,75.

Na letra a) tome \mathrm{d} R_1 = + 0.03 e \mathrm{d}R_2 = - 0.05. Analogamente na letra b).
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?