• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor Fernandobertolaccini » Dom Jul 06, 2014 22:55

Sendo F(x) = cos(arcsenx) , Calcule : F'(\frac{\sqrt[]{3}}{2})Resp:(-\sqrt[]{3})
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Derivada

Mensagempor young_jedi » Seg Jul 07, 2014 20:20

f(x)=cos(arcsen(x))

f'(x)=-sen(arcsen(x)).(arcsen(x))'

f'(x)=-sen(arcsen(x)).\frac{1}{cos(arcsen(x))}

f'(x)=\frac{-x}{cos(arcsen(x))}

f'\left(\frac{\sqrt3}{2}\right)=\frac{-\left(\frac{\sqrt3}{2}\right)}{cos(arcsen\left(\frac{\sqrt3}{2}\right))}

f'\left(\frac{\sqrt3}{2}\right)=\frac{-\left(\frac{\sqrt3}{2}\right)}{cos\left(\frac{\pi}{3}\right)}

f'\left(\frac{\sqrt3}{2}\right)=\frac{-\left(\frac{\sqrt3}{2}\right)}{\frac{1}{2}}

f'\left(\frac{\sqrt3}{2}\right)=-\sqrt3
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.