• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites de funcoes no infinito

Limites de funcoes no infinito

Mensagempor G-Schmitt-Jr » Sex Mai 30, 2014 12:19

Alguém poderia me ajudar a entender como resolver esse limite:

f(x) = (3+2*x)^5/(2*x^4-x^3-2*x-5)

O limite quando x tende a -infinito.


Muito obrigado!!!
G-Schmitt-Jr
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Mai 30, 2014 11:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites de funcoes no infinito

Mensagempor Janoca » Seg Jun 16, 2014 02:35

Caro G-Schimitt-JR,

Sempre que vc for resolver limites com divisões de polinômios que tendem no infinito, observe o seguinte:

1º Caso, se houver uma divisão de polinômio que tende para mais ou menos infinito, e tiver o maior grau em cima (ou seja, no numerador) então o limite será
+ infinito, ou - infinito. No seu caso, ele será menos infinito.

\lim_{x\rightarrow\pm\infty}\frac{maior grau}{menor grau}

2º Caso, se houver uma divisão de polinômio que tende para mais ou menos infinito, e tiver o maior grau em baixo (ou seja, no denominador) então o limite será zero. POis, a função de baixo cresce muito rápido, levando o limite pra zero.

\lim_{x\rightarrow\pm\infty}\frac{menor grau}{maior grau}

3º Caso, se houver uma divisão de polinômio que tende para mais ou menos infinito, e tiver o mesmo grau em cima (ou seja, no numerador) e em baixo (ou seja, no denominador) então o limite será o coeficiente de maior grau do polinômio.

\lim_{x\rightarrow\pm\infty}\frac{mesmo grau}{mesmo grau}

Espero que esse macete possa lhe ajudar.
Obs: Não esqueça de prestar atenção nos sinais
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.