• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas parciais de segunda ordem

Derivadas parciais de segunda ordem

Mensagempor Victor Mello » Sáb Fev 22, 2014 14:49

Galera, eu estou tentando resolver a derivada parcial de segunda ordem da função z = cos (x^3 + xy).

Bom, no começo estava dando certo, derivei tudo em relação x, y.

\frac{\partial z}{\partial x} = -sen(x^3 +xy) (3x^2 + y) = (-3x^2 - y)sen(x^3+xy)

\frac{\partial z}{\partial y} = -sen(x^3 +xy).x = -xsen(x^3 +xy)

Aí na hora de derivá-los na segunda ordem, o meu resultado deu:

\frac{\partial^2 z}{\partial x^2} = -6xsen(x^3 +xy) + (-3x^2 - y)[cos(x^3+xy)(3x^2+y)]

\frac{\partial^2 z}{\partial y^2} = -x^2cos(x^3+xy)

Só que em relação ao x, o gabarito deu -(3x^2 + y^2)cos(x^3 +xy) -6xsen(x^3 +xy), está bem diferente da minha pelo simples fato do termo (3x^2+y) aparecer uma vez só no cosseno, o meu apareceu duas vezes, será que eu errei alguma coisa, de sinal, ou algo do tipo? Eu verifiquei tudo de novo, mas deu mesma coisa. Só em relação ao y é que o gabarito correspondeu a minha resposta.

Bom, espero que tenham compreendido a minha dúvida, e obrigado!

Abraço!
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Derivadas parciais de segunda ordem

Mensagempor Man Utd » Sáb Fev 22, 2014 18:58

Victor Mello escreveu:Galera, eu estou tentando resolver a derivada parcial de segunda ordem da função z = cos (x^3 + xy).

Bom, no começo estava dando certo, derivei tudo em relação x, y.

\frac{\partial z}{\partial x} = -sen(x^3 +xy) (3x^2 + y) = (-3x^2 - y)sen(x^3+xy)

\frac{\partial z}{\partial y} = -sen(x^3 +xy).x = -xsen(x^3 +xy)

Aí na hora de derivá-los na segunda ordem, o meu resultado deu:

\frac{\partial^2 z}{\partial x^2} = -6xsen(x^3 +xy) + (-3x^2 - y)[cos(x^3+xy)(3x^2+y)]

\frac{\partial^2 z}{\partial y^2} = -x^2cos(x^3+xy)

Só que em relação ao x, o gabarito deu -(3x^2 + y^2)cos(x^3 +xy) -6xsen(x^3 +xy), está bem diferente da minha pelo simples fato do termo (3x^2+y) aparecer uma vez só no cosseno, o meu apareceu duas vezes, será que eu errei alguma coisa, de sinal, ou algo do tipo? Eu verifiquei tudo de novo, mas deu mesma coisa. Só em relação ao y é que o gabarito correspondeu a minha resposta.

Bom, espero que tenham compreendido a minha dúvida, e obrigado!

Abraço!



Olá :)

Sua solução está correta veja o Wolfram , o gabarito não seria -(3x^2+y)^2*cos(x^3+xy)-6x*sen(x^3+xy) ? , assim sua resposta bateria com o gabarito.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivadas parciais de segunda ordem

Mensagempor Victor Mello » Dom Fev 23, 2014 01:49

Estranho... Acho que o gabarito viajou hahahahaha. Enfim, se está correta a resposta, bom, acho que compensa a minha resolução.

Obrigado pela atenção.
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59