• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida - limite

Dúvida - limite

Mensagempor Danilo » Sex Nov 29, 2013 20:33

Calcular \lim_{x\rightarrow0+}{x}^{x}.

Normalmente eu sei calcular limite, mas tenho dúvido quando é uma função do tipo acima. Gostaria que me ajudasse a resolver aplicando ln e usando L'Hopital... (se for possível). Grato desde já :)
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - limite

Mensagempor Bravim » Sex Nov 29, 2013 21:20

\lim_{x\rightarrow0}y=\lim_{x\rightarrow0}x^x
\lim_{x\rightarrow0}lny=\lim_{x\rightarrow0}\frac{lnx}{\frac{1}{x}}
Usando L'Hôpital,
\frac{\frac{1}{x}}{\frac{-1}{x^2}}=-x
Assim, \lim_{x\rightarrow0}lny=0
e teremos no final \lim_{x\rightarrow0}y=1
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.