• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Aplicação da Derivada

[Derivada] Aplicação da Derivada

Mensagempor Juliana Odebrech » Qua Nov 27, 2013 23:26

Um lado de um retângulo está crescendo a uma taxa de 17 cm/min e o outro lado está decrescendo a uma taxa de 5cm/min. Num certo instante, os comprimentos desses lados são de 10cm e 7cm, respectivamente. A área do retângulo está crescendo ou decrescendo neste instante? A que velocidade?
Juliana Odebrech
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 27, 2013 23:16
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivada] Aplicação da Derivada

Mensagempor young_jedi » Qui Nov 28, 2013 18:15

os lados sendo x e y teremos qeu

A=xy

\frac{dA}{dt}=\frac{dx}{dt}.y+x.\frac{dy}{dt}

substituindo os valores teremos

\frac{dA}{dt}=17.7+10.(-5)

\frac{dA}{dt}=69 cm/min

portanto a area esta crescendo a uma taxa de 69 cm/min
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)