por ronaldo9nine » Qua Nov 20, 2013 10:31
Olá, gostaria de saber como é feita a dedução da formula do volume do cone por meio de revolução( por integral)
abs.
-
ronaldo9nine
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Nov 20, 2013 10:27
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Qua Nov 20, 2013 20:06
Há uma demonstração aqui
http://en.wikipedia.org/wiki/Cone . Também é possível por soma de Riemann ,veja
Considere o seguimento de reta
![y = \frac{r}{h} \cdot x , x \in [0,h] y = \frac{r}{h} \cdot x , x \in [0,h]](/latexrender/pictures/9495b653b3d477281913cc63722cda98.png)
(r,h > 0) . Girando este segmento em torno do eixo x iremos obter o cone circular de raio

e altura

.Dividindo

em n partes iguais e denotando

onde

.
No intervalo
![I_{i}= [x_{i-1},x_i]
,n I_{i}= [x_{i-1},x_i]
,n](/latexrender/pictures/e1bd29a0b9896b1ae0dd52e9ac263ff9.png)
, a interseção do plano

com o cone será um circulo cuja área é constante e é igual a

. Assim o volume de cada fatia é

e portanto o volume do cone pode ser aproximado por

. Passando ao limite com

, obtemos a fórmula

.

vira "dx" ,

vira

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [volume do cubo] Soma dos volumes das infinitas caixas
por Priscilamoraes307 » Sex Ago 10, 2012 23:14
- 2 Respostas
- 2065 Exibições
- Última mensagem por Russman

Sáb Ago 11, 2012 16:08
Geometria Espacial
-
- [Volumes de sólidos por rotação] Volume mudando os eixos
por Edmond Dantes » Sáb Out 20, 2018 11:31
- 2 Respostas
- 5723 Exibições
- Última mensagem por Edmond Dantes

Sáb Out 20, 2018 16:40
Cálculo: Limites, Derivadas e Integrais
-
- [volume] Cone
por plugpc » Qui Jul 10, 2008 19:15
- 3 Respostas
- 5213 Exibições
- Última mensagem por admin

Sex Jul 11, 2008 03:42
Geometria Espacial
-
- VOLUME DO CONE
por EULER » Sáb Jul 31, 2010 22:59
- 2 Respostas
- 3926 Exibições
- Última mensagem por EULER

Ter Ago 03, 2010 14:08
Geometria Espacial
-
- Volume do Cone
por garciarafael » Seg Jul 18, 2011 22:00
- 3 Respostas
- 2763 Exibições
- Última mensagem por garciarafael

Seg Jul 18, 2011 23:52
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.