• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integral Impossível

[Integral] Integral Impossível

Mensagempor Paulo Perez » Sex Out 04, 2013 16:19

Olá, estou tentando resolver esta integral:

\int_{}^{}\frac{sen(\sqrt[2]{\Theta})}{\sqrt[2]{\Theta{cos}^{3}(\sqrt[2]{\Theta})}}d\Theta

porém, a lista de exercício não apresenta resposta e eu cheguei neste resultado pelo método da substituição e por partes:

\frac{4}{3}tg(\sqrt[2]{\Theta}){sec}^{\frac{3}{2}}(\sqrt[2]{\Theta})-\frac{8}{27}{sec}^{\frac{9}{2}}(\sqrt[2]{\Theta})

como não fiquei satisfeito em não saber se estava correto, tirei a prova real, derivando o resultado obtido acima cheguei em:

\frac{3{tg}^{2}(\sqrt[2]{\Theta}){sec}^{\frac{3}{2}}(\sqrt[2]{\Theta})-2tg(\sqrt[2]{\Theta}){sec}^{\frac{9}{2}}(\sqrt[2]{\Theta})+2{sec}^{\frac{7}{2}}(\sqrt[2]{\Theta})}{3\sqrt[2]{\Theta}}

e pela "pequena" diferença entre a função original e a prova real conclui que estava errado (ah vá!) e agora peço ajuda para vocês, porque não tenho a mínima ideia de como resolver este exercício.

Obrigado
Paulo Perez
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 03, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] Integral Impossível

Mensagempor young_jedi » Sáb Out 05, 2013 10:10

por substituição eu faria

u=cos(\sqrt{\theta})

du=\frac{-sen(\sqrt{\theta})}{2\sqrt{\theta}}d\theta


\int\frac{sen(\sqrt{\theta})}{\sqrt{\theta.cos^3(\sqrt{\theta})}}d\theta


=\int-\frac{2}{\sqrt{u^3}}du

=\frac{4}{\sqrt u}

=\frac{4}{\sqrt{cos(\sqrt{\theta})}}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.