• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Preciso ajuda urgente neste Limite

Preciso ajuda urgente neste Limite

Mensagempor duduscs » Seg Set 23, 2013 16:32

Olá pessoal, estou urgentemente necessitando ajuda neste limite.

\lim_{x \rightarrow  +\infty} -5x^3+8x^2-3

Tentei de tudo e não consegui
duduscs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Set 22, 2013 21:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. De Computação
Andamento: cursando

Re: Preciso ajuda urgente neste Limite

Mensagempor Sobreira » Ter Set 24, 2013 01:53

Há uma indeterminação do tipo \infty-\infty, portanto trabalhando esta função.

{x}^{2}\left(-5x+8 \right)-3

Aplicando o limite:

{\infty}^{2}\left(-\infty \right)-3

-\infty-3

-\infty
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}