• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão complicada de volume.

Questão complicada de volume.

Mensagempor ravi » Qui Set 19, 2013 15:36

Boa tarde, tentei resolver essa questão que foi de uma prova que fiz, mas não consegui muito coisa.

Seja R uma região plana limitada pelas curvas y=f(x) e y=g(x) inteiramente contida de um lado do eixo y. Mostre que se R é girada ao redor do eixo y, então o volume do sólido resultante é o produto da área A de R e a distância d percorrida pelo centróide de R.
ravi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 31, 2012 13:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Questão complicada de volume.

Mensagempor young_jedi » Sex Set 20, 2013 21:39

o centroide de R tem coordenadas dadas por

\overline{x},\overline{y}

a fazer um giro em torno de y temos que o caminho que ele percorre sera

2\pi.\overline{x}

temos que


\overline{x}=\int x.(f(x)-g(x))dx

e temos que o volume do solido obtido pela rotação

V=\int 2\pi.x.(f(x)-g(x))dx

V=2\pi\int x.(f(x)-g(x))dx

ou seja

V=2\pi.\overline{x}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.