• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação logística

Equação logística

Mensagempor livia02 » Qua Ago 14, 2013 20:32

Alguém consegue me ajudar a provar o seguinte problema? Um amigo me pediu ajuda, mas não consegui fazer.

Prove que a eq. logística
\frac{dq}{dr}= q(a-bq) , a>0, b>0, a-bq>0.
é de Bernoulli.
livia02
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Ago 14, 2013 20:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Equação logística

Mensagempor Russman » Qua Ago 14, 2013 23:39

Sendo y=y(x) uma função tal que

\frac{dy}{dx} + p(x)y = r(x)y^n

onde n é um número real diferente de 0 ou 1 e p(x) e r(x) funções conhecidas, então chamamos essa equação de Eq. Dif. de Bernoulli.

Veja que a sua equação é exatamente nessa forma com p(x) = -a e r(x) = -b.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)