• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] exercicio

[limite] exercicio

Mensagempor lucasdemirand » Qua Jul 10, 2013 00:41

olá pessoal, segue uma duvida de calculo, envolvendo limites
\lim_{x\rightarrow a} \frac{tg(x)-tg(a)}{x-a} , a \neq 0

quem puder ajudar, agradeço
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [limite] exercicio

Mensagempor young_jedi » Qua Jul 10, 2013 21:58

\lim_{x\to0}\frac{tg(x)-tg(a)}{x-a}=\lim_{x\to0}\frac{\frac{sen(x)}{cos(x)}-\frac{sen(a)}{cos(a)}}{x-a}

\lim_{x\to0}\frac{\frac{sen(x)cos(a)-cos(x).sen(a)}{cos(s)cos(a)}}{x-a}=

\lim_{x\to0}\frac{1}{cos(x)cos(a)}\frac{sen(x-a)}{x-a}=


temos que o segundo termo representa o limite fundamental portanto

\lim_{x\to0}\frac{1}{cos(x)cos(a)}\frac{sen(x-a)}{x-a}=\frac{1}{1.sen(a)}.1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [limite] exercicio

Mensagempor lucasdemirand » Qui Jul 11, 2013 18:03

obrigado por esclarecer c omo desenvolvo o limite mestre
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}