• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] exercicio

[limite] exercicio

Mensagempor lucasdemirand » Qua Jul 10, 2013 00:41

olá pessoal, segue uma duvida de calculo, envolvendo limites
\lim_{x\rightarrow a} \frac{tg(x)-tg(a)}{x-a} , a \neq 0

quem puder ajudar, agradeço
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [limite] exercicio

Mensagempor young_jedi » Qua Jul 10, 2013 21:58

\lim_{x\to0}\frac{tg(x)-tg(a)}{x-a}=\lim_{x\to0}\frac{\frac{sen(x)}{cos(x)}-\frac{sen(a)}{cos(a)}}{x-a}

\lim_{x\to0}\frac{\frac{sen(x)cos(a)-cos(x).sen(a)}{cos(s)cos(a)}}{x-a}=

\lim_{x\to0}\frac{1}{cos(x)cos(a)}\frac{sen(x-a)}{x-a}=


temos que o segundo termo representa o limite fundamental portanto

\lim_{x\to0}\frac{1}{cos(x)cos(a)}\frac{sen(x-a)}{x-a}=\frac{1}{1.sen(a)}.1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [limite] exercicio

Mensagempor lucasdemirand » Qui Jul 11, 2013 18:03

obrigado por esclarecer c omo desenvolvo o limite mestre
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.