• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] exercicio limites envolvendo ln

[Limites] exercicio limites envolvendo ln

Mensagempor lucasdemirand » Qua Jul 10, 2013 00:31

olá pessoal, tenho uma duvida para a resoluçao desse seguinte problema, quem puder ajudar, agradeço :)
\lim_{x\rightarrow 0 +} [ln(x) - ln(sen(x))]
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [Limites] exercicio limites envolvendo ln

Mensagempor young_jedi » Qua Jul 10, 2013 21:48

\lim_{x\to0}(\ln(x)-ln(sen(x)))=\lim_{x\to0}ln\left(\frac{x}{sen(x)}\right)

=\lim_{x\to0}ln\frac{1}{\left(\frac{sen(x)}{x}\right)}

temos que o que esta no denominador é o limite fundamental e é igual a 1 portanto

=\lim_{x\to0}ln\frac{1}{\left(\frac{sen(x)}{x}\right)}=ln\frac{1}{1}=0
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)