• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Man Utd » Sáb Jul 06, 2013 23:48

Calcule o limite abaixo(sem regra de L'Hospital):

\lim_{x\rightarrow 0}\frac{senx-x}{x^3}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Limite

Mensagempor e8group » Dom Jul 07, 2013 12:32

Na minha opinião o resultado do limite segue do uso da continuidade no ponto 0 de cada função do denominador e numerador após calcular seus limites . Observe que para x \neq 0 vale a expressão que é equivalente a mesma postada:

\frac{\dfrac{sin(x)- sin0}{x-0} -\dfrac{x- 0}{x-0} }{\dfrac{x^3 - 0}{x-0}}. Tomando o limite com x\to 0 e utilizando suas regras operatórias , obtemos:

(i) \lim_{x\to 0} \dfrac{sin(x)- sin0}{x-0} -\dfrac{x- 0}{x-0}  =  cos(0)  -  1 que devido a continuidade de cos(x)  -  1 no ponto x =0 ,segue cos(0)  -  1 = \lim_{x\to 0} cos(x)  -  1 = \lim_{x\to 0} cos(x)  -  cos(0).


(ii) \lim_{x\to 0} \dfrac{x^3 - 0}{x-0}} = 0 = 3 \cdot 0^2 = 3 \lim_{x\to 0} x^2 (Por quê ??)

Ora , por (i) , (ii) vemos que \lim_{x\to 0} \frac{\dfrac{sin(x)- sin0}{x-0} -\dfrac{x- 0}{x-0} }{\dfrac{x^3 - 0}{x-0}} =  \frac{\lim_{x\to 0} cos(x) -  cos(0)}{3 \lim_{x\to 0} x^2} .Muliplicando o denominador e numerador por x - 0 e seguindo o mesmo raciocínio utilizado nos itens acima , você obterá como resposta -1/6 .


Observações :

(a) No fundo estamos aplicando a regra de L'hospital ,só que não estamos utilizando as regras práticas de derivação(Isto não é verdade,pois usei elas ) .Se você já estudou derivadas certamente sabe que estou dizendo.

(b) Para adotar este método de solução ,seria importante mostrar todos cálculos que justifica as resposta nos itens (i) e (ii) para ficar claro que você apenas não aplicou as regras de derivação .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)