• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo, Valor Médio. Velocidade instantânea.

Cálculo, Valor Médio. Velocidade instantânea.

Mensagempor leocastilho » Qua Jun 12, 2013 12:35

Olá pessoal, estou com um problema aqui que não consigo resolver.

O velocimetro de um automóvel registra a velocidade de 50km/h quando ele passa por um marco quilométrico ao longo da rodovia. Quatro minutos mais tarde, quando o automóvel passa por um segundo marco a 5 Km do primeiro, o velocimetro registra 55Km/h. Use o teorema do valor médio para provar que a velocidade excedeu a 70 Km/h em alguns instântes enquanto o automovel percorria a distância entre os dois marcos.

Primeiramente eu tentei criar um gráfico do tempo em função da velocidade e apliquei na fórmula do valor médio


f '(c) = f(b) - f(a)/ b - a
quando o tempo é 4 a velocidade é 55, logo f(4) = 55
quando o tempo é 0 a velocidade é 50, logo f(0)= 50
f '(c) = 55 - 50 / 4 - 0
f '(c) = 5/4

Apartir deste ponto já não sei o que posso fazer =/. Outro problema é que não sei aonde posso usar a distância de 5 Km entre os marcos.

Obrigado desde já.
leocastilho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jun 12, 2013 12:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Cálculo, Valor Médio. Velocidade instantânea.

Mensagempor e8group » Qua Jun 12, 2013 22:40

Vamos tentar ,considere a função X na variável t que fornece a posição do automóvel .Suponha que no instante t_k,tem-se X(t_k) = x_k km para algum x_k > 0 e v(t_k) = X'(t_k) = 50km/h ,mas sabemos que após 4 min , X(t_n) = (5+x_k)km com t_n = t_k + 4min (pois X(t_n) - X(t_k) = 5km ) .Mas ,pelo TVM , existe algum c em (t_k,t_n) tal que ,X'(c) = v(c) = \frac{X(t_n) - X(t_k)}{t_n - t_k} =\frac{5km}{4min} =75km/h .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}