• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DERIVADAS PARCIAIS] Função definida por partes

[DERIVADAS PARCIAIS] Função definida por partes

Mensagempor Sohrab » Dom Mai 26, 2013 17:13

Calcule as derivadas parciais da função abaixo:

\[
f(x,y) = 
  \begin{cases}
      \frac{x + y^4}{x^2 + y^2}, & x,y \neq (0,0) \\
      0, & (x,y) = (0,0) 
  \end{cases}
\]

Galera, como devo proceder para calcular as derivadas parciais de uma função definida por partes, como essa acima?

(na resposta, diz que a derivada parcial em relação a x não existe no ponto (0,0), podem me ajudar a entender isso também? *-)

Obrigado :y:
Sohrab
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mar 18, 2010 17:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Téc. em Mec. Usinagem e Info Programação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.