• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mudança de variavel na integral

Mudança de variavel na integral

Mensagempor matmatco » Ter Abr 23, 2013 22:29

olá, não estou entendendo o que tenho que fazer nesse exercício .

Suponha f contínua em [a,b].Seja g:[c,d]\rightarrow IR com g' contínua em [c,d], g(c)=a e g(d)=b. Suponha ainda que g'(u)>0 em ]c,d[ .Seja c = u0<u1<u2<....<un=d uma partição de [c,d] e seja a= x0<x1<x2<...<xn = b partição de [a,b] onde xi = g(ui) para i variando de 0 a n.

a) mostre que para todo i, i = 1,2,....n existe ui em [ui-1,ui] tal que \Delta xi = g'(ui)\Delta ui

b) conclua de (a) que \sum_{i=1}^{n} f(g(ui))g'(ui)\Delta ui = \sum_{i=1}^{n} f(ci)\Delta xi onde ci = g(ui).

c) Mostre que existe M>0 tal que \Delta xi \leq M \Delta ui para i variando de 0 a n.

d) conclua que
\lim_{max \Delta ui\to 0}\sum_{i=1}^{n}f(g(ui))g' (ui)\Delta ui = \lim_{max \Delta xi\to 0} \sum_{i=1}^{n}}f(ci)\Delta xi
ou seja 
 \int_{c}^{d}f(g(u))g' (u)du = \int_{a}^{b}f(x)dx
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}