• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pedido de explicação mais filosófica do que calculista.

Pedido de explicação mais filosófica do que calculista.

Mensagempor Douglas16 » Seg Abr 15, 2013 11:28

Assumindo que f(x) é diferenciável em x=a, expresse o valor deste limite em função de f'\left(a \right):

\lim_{h\rightarrow0} \frac{f\left(a+h \right)-f\left(a-h \right)}{2h}

Fazendo a substituição x=a-h, então a+h=x+2h :

Portanto, \lim_{h\rightarrow0} \frac{f\left(x+2h \right)-f\left(x \right)}{2h}= f'\left(a \right)

Aqui considero que o limite dado pela questão pode ser escrito em função de f'\left(a \right), pois se considerar primeiramente os seguintes limites isoladamente:

\lim_{h\rightarrow0} f\left(x \right)= f\left(a \right)

\lim_{h\rightarrow0} f\left(a+h \right)= f\left(a \right)

\lim_{h\rightarrow0} 2h= \lim_{h\rightarrow0} h = 0

Assim o limite dado pela questão: \lim_{h\rightarrow0} \frac{f\left(a+h \right)-f\left(a-h \right)}{2h}, pode ser reescrito como \lim_{h\rightarrow0} \frac{f\left(a+h \right)- f\left(a \right)}{h}=f'\left(a \right), pois cada limite de cada termo do limite da questão considerado isoladamente resulta no mesmo valor do limite que depois considerados juntamente resulta em \lim_{h\rightarrow0} \frac{f\left(a+h \right)- f\left(a \right)}{h}=f'\left(a \right)

Alguém tem outra explicação?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Pedido de explicação mais filosófica do que calculista.

Mensagempor e8group » Seg Abr 15, 2013 18:07

Podemos proceder da seguinte forma :

\lim_{h\to 0} \frac{f(h+a) - f(a-h)}{2h} = \lim_{h\to 0} \frac{f(h+a)- f(a) + f(a)- f(a-h)}{2h} .


Ora ,mas pelo fato de f ser diferenciável no ponto a implica f é contínua em a ,desta forma \lim_{x\to a} f(x) = f(a) ,além disso \lim_{x\to a} f(x) = L \iff \lim_{h\to 0} f(a-h) = L \iff \lim_{h\to 0} f(a +h) = L (para algum L real ).Assim ,

\lim_{h\to 0} \frac{f(h+a)- f(a) + f(a)- f(a-h)}{2h} = \lim_{h\to 0} \frac{f(h+a)- f(a) + f(a+h)- f(a)}{2h} = 2 \lim_{h\to 0} \frac{f(h+a)- f(a) }{2h} = f'(a) .

Tomemos por exemplo f(x) = x^2 que é uma função contínua em toda a reta .
Temos :
\lim_{h\to 0} \frac{(h+a)^2 - (a-h)^2 }{2h} =  \lim_{h\to 0} \frac{h^2 +a^2 +2ah - a^2 -h^2 +2ah }{2h} =  \lim_{h\to 0} \frac{ 4ah }{2h} = 2a .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.