por marcosmuscul » Qui Abr 04, 2013 17:34

minha resolução:



para achar reta horizontal:
basta que a expressão do numerador de 0
para achar reta vertical:
basta que a expressão do denominador de 0
não consigo passar disto pois em ambos os casos chego a uma equação de círculo para o primeiro e uma parecida com a de circulo para o segundo.
o ponto (0,0) sei que é de inflexão.
me ajudem, please.
-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
por Russman » Qui Abr 04, 2013 18:19
marcosmuscul escreveu:para achar reta horizontal:
basta que a expressão do numerador de 0
para achar reta vertical:
basta que a expressão do denominador de 0
O seu raciocínio esta correto. Porém, não esqueça que, você deve garantir também no 1° caso que o denominador não se anule. Se isto acontecer você terá o quociente

que pode ser diferente de

. No 2° caso você deve garantir que o numerador não se anule pelo mesmo motivo.
Acrescente estas duas novas condições e eu acredito que você será capaz de resolver completamente o problema.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Assintota vertical e horizontal
por Zercamga » Seg Set 17, 2012 12:30
- 6 Respostas
- 9910 Exibições
- Última mensagem por Zercamga

Ter Set 18, 2012 17:32
Cálculo: Limites, Derivadas e Integrais
-
- Pontos onde a reta Tangente é vertical:
por gabrielb44 » Sáb Nov 18, 2017 20:35
- 0 Respostas
- 1724 Exibições
- Última mensagem por gabrielb44

Sáb Nov 18, 2017 20:35
Cálculo: Limites, Derivadas e Integrais
-
- Não consigo achar o limite
por CrazzyVi » Sáb Nov 14, 2009 13:34
- 2 Respostas
- 2391 Exibições
- Última mensagem por CrazzyVi

Qui Dez 10, 2009 14:28
Cálculo: Limites, Derivadas e Integrais
-
- Não consigo achar o determinante
por IsabelRangell » Qui Abr 08, 2010 17:08
- 1 Respostas
- 2438 Exibições
- Última mensagem por MarceloFantini

Qui Abr 08, 2010 19:55
Matrizes e Determinantes
-
- Nao consigo achar a forma reduzida da matriz..
por PeIdInHu » Seg Jun 14, 2010 23:07
- 1 Respostas
- 2487 Exibições
- Última mensagem por PeIdInHu

Seg Jun 14, 2010 23:55
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.