por Douglas16 » Sex Mar 15, 2013 00:18

Preciso encontra uma identidade para esta igualdade e que seja expressa em função de

e de

.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por DanielFerreira » Sex Mar 15, 2013 07:53
Douglas,
bom dia!

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Douglas16 » Sex Mar 15, 2013 09:33
Então eu esqueci de mencionar que deve ser na forma

-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Procura das Idades.
por Cleyson007 » Qui Ago 06, 2009 12:12
- 2 Respostas
- 1234 Exibições
- Última mensagem por Cleyson007

Sex Ago 07, 2009 13:43
Sistemas de Equações
-
- Identidade Trigonometrica
por MERLAYNE » Ter Abr 24, 2012 19:40
- 4 Respostas
- 2312 Exibições
- Última mensagem por DanielFerreira

Ter Abr 24, 2012 20:12
Trigonometria
-
- Função Identidade
por Jhenrique » Sáb Nov 17, 2012 19:29
- 0 Respostas
- 1218 Exibições
- Última mensagem por Jhenrique

Sáb Nov 17, 2012 19:29
Funções
-
- [Integral] Identidade
por klueger » Seg Mar 04, 2013 17:52
- 1 Respostas
- 1532 Exibições
- Última mensagem por young_jedi

Seg Mar 04, 2013 23:28
Cálculo: Limites, Derivadas e Integrais
-
- [Trigonometria] Identidade trigonometrica
por Alvadorn » Sáb Ago 13, 2011 17:47
- 2 Respostas
- 1788 Exibições
- Última mensagem por Alvadorn

Sáb Ago 13, 2011 20:27
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.