por sadzinski » Qua Jan 02, 2013 18:55
Quando uma empresa usa x unidades de trabalho e y unidades de capital, sua produção mensal de certo produto é dado por f(x,y)= 32x +20y +3xy -2x² -2,5y². Obtenha os valeres de x e y que maximizam o lucro.
Minha duvida é: a função f(x,y), já esta pronta para ser derivar parcialmente?
As raízes vão me dizer quais são os maxímos e os minimos?
-
sadzinski
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jan 01, 2013 16:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia em Fabricação Mecânica
- Andamento: cursando
por Russman » Qua Jan 02, 2013 21:56
Você precisa obter a função Lucro (

) e então basta que você resolva o sistema

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por young_jedi » Qua Jan 09, 2013 20:36
veja que voce chegou na seguinte relação

resolvendo voce chega em

ai nesta parte voce se confundiu, o correto seria



corrija o resto
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Russman » Qua Jan 09, 2013 21:11
Acredito que houve um erro de digitação, pois x= 20.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por sadzinski » Qui Jan 10, 2013 05:34
Obrigado pela ajuda.
-
sadzinski
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jan 01, 2013 16:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia em Fabricação Mecânica
- Andamento: cursando
por young_jedi » Qui Jan 10, 2013 10:39
verdade
x=20
me confundi na ultima expressão
obrigado por observar russman
valeu ate mais
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Otimização calculo 2
por sadzinski » Qua Jan 09, 2013 17:52
- 0 Respostas
- 692 Exibições
- Última mensagem por sadzinski

Qua Jan 09, 2013 17:52
Cálculo: Limites, Derivadas e Integrais
-
- Otimização calculo 2 ( Um edifício )
por sadzinski » Ter Jan 15, 2013 08:47
- 1 Respostas
- 2918 Exibições
- Última mensagem por young_jedi

Ter Jan 15, 2013 15:04
Cálculo: Limites, Derivadas e Integrais
-
- Otimização calculo 2 (retângulo inscrito em um triângulo)
por sadzinski » Qui Jan 03, 2013 08:39
- 1 Respostas
- 9359 Exibições
- Última mensagem por young_jedi

Qui Jan 03, 2013 11:34
Cálculo: Limites, Derivadas e Integrais
-
- Otimização calculo 2 ( O lucro que uma empresa obtém)
por sadzinski » Qui Jan 10, 2013 11:42
- 3 Respostas
- 3924 Exibições
- Última mensagem por young_jedi

Sex Jan 11, 2013 11:29
Cálculo: Limites, Derivadas e Integrais
-
- Otimizacao
por Taisa » Sex Nov 12, 2010 13:53
- 1 Respostas
- 2024 Exibições
- Última mensagem por MarceloFantini

Sex Nov 12, 2010 14:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.