por Sherminator » Ter Nov 13, 2012 14:39
Boa tarde,
podiam-me ajudar a derivar 2 funções se faz favor?
A primeira é

qual é a sua derivada e como lá chegamos?
A segunda é

qual a sua derivada e como lá chegamos?
Agradeço a ajuda, um abraço!
-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por e8group » Ter Nov 13, 2012 15:28
Perceba se

e

.Considerando

. Pela regra da cadeia , temos que

. Derivando em relação a x cada uma ,

e

.Ou seja ,

.
Tente fazer a outra , caso não conseguir post aqui .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Sherminator » Qua Nov 14, 2012 08:14
Obrigado pela ajuda, assim já consegui resolver a outra, deixo aqui a resolução a ver se está bem:

Podemos resolver pela formula

Assim:

Resultado:

Correto?
Cumprimentos

-
Sherminator
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Out 20, 2012 09:50
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Gestão de Empresas
- Andamento: cursando
por e8group » Qua Nov 14, 2012 09:43
sim estar certo . O que você fez , foi isto :

. No caso u é uma função .Isso mesmo.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas] Mínimo de função
por vinisoares9 » Dom Jun 24, 2012 00:22
- 2 Respostas
- 1647 Exibições
- Última mensagem por vinisoares9

Dom Jun 24, 2012 02:58
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Função diferenciável
por fff » Sáb Set 27, 2014 18:31
- 0 Respostas
- 1069 Exibições
- Última mensagem por fff

Sáb Set 27, 2014 18:31
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Derivada da função
por neoreload » Sáb Nov 01, 2014 08:25
- 5 Respostas
- 3399 Exibições
- Última mensagem por young_jedi

Dom Nov 02, 2014 10:29
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas]Domínio da função
por Laisa » Seg Mar 04, 2019 16:22
- 0 Respostas
- 4594 Exibições
- Última mensagem por Laisa

Seg Mar 04, 2019 16:22
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Esboço do gráfico de uma função
por Leon » Sáb Jun 07, 2014 22:28
- 0 Respostas
- 1023 Exibições
- Última mensagem por Leon

Sáb Jun 07, 2014 22:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.