• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação Diferencial] wolfram

[Equação Diferencial] wolfram

Mensagempor lhol » Ter Nov 13, 2012 13:26

Boa Tarde. Galera. Tenho uma eq diff e não entendi a resolução do wolfram alpha. é dado que y(0)= 5
\frac{\delta y}{\delta t}= 2+2y+t+ty
lhol
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Nov 13, 2012 13:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Equação Diferencial] wolfram

Mensagempor MarceloFantini » Ter Nov 13, 2012 20:42

Acredito que seja possível resolver por separação de variáveis:

\frac{dy}{dt} = 2 + t + 2y + ty = 2(1+y) + t(1+y) = (1+y)(2+t), daí \frac{dy}{y +1} = (2+t)dt.

Integrando de ambos lados, temos \ln (y+1)= 2t + \frac{t^2}{2} + C e y(t) +1 = e^{2t + \frac{t^2}{2} + C} = C_0 e^{2t + \frac{t^2}{2}}.

Usando a condição de contorno temos que y(0) =5, portanto

5 +1 = C_0.

Finalmente,

y(t) = 6 e^{2t + \frac{t^2}{2}} -1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação Diferencial] wolfram

Mensagempor lhol » Ter Nov 13, 2012 23:46

O meu problema era com a relacao ln e e, mas entendi vlw
lhol
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Nov 13, 2012 13:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}