• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITE

LIMITE

Mensagempor SILMARAKNETSCH » Sex Nov 09, 2012 09:30

Lim x + 1
x - ² ---------
4x - 3



obs onde esta um traço em baixo de lim é a flexinha perdoem aprenderei a fazer corretamente
Editado pela última vez por SILMARAKNETSCH em Sex Nov 09, 2012 09:34, em um total de 1 vez.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: LIMITE

Mensagempor SILMARAKNETSCH » Sex Nov 09, 2012 09:33

lim x+1
-------------
x - ² 4x - 3


este é o formato só em baixo do limite é que não consegui colocar a seta ainda não sei mexer com as fórmulas prontas
então a questão é na primeira linha x+1 e debaixo 4x - 3
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando

Re: LIMITE

Mensagempor e8group » Sex Nov 09, 2012 10:14

Utilizando latex , veja como fica o numerador e denominador
Código: Selecionar todos
\frac{x+1}{x^2  - 4x - 3 }
, resultado : \frac{x+1}{x^2  - 4x - 3 } .

OBS. o Código deve estar entre .

Para limites veja como fica ,
Código: Selecionar todos
\lim_{x\to a }   
. Resultado : \lim_{x\to a }

Como é iniciante , utilize este site http://www.codecogs.com/latex/eqneditor.php?lang=pt-br , lá há um menu com as fórmulas que auxiliara vc até acostumar com o padrão . Além disso , automaticamente a medida que vc digitar os códigos lá será compilado em qual quer formato de imagem , (gif , png , etc ) .


Por favor ,corrija seu tópico para podermos ajudar vc .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: LIMITE

Mensagempor MarceloFantini » Sex Nov 09, 2012 10:19

Bom dia Silmara. Por favor tente usar LaTeX nas suas postagens. Se entendi bem, para este limite por exemplo o código seria

Código: Selecionar todos
\lim_{x \to 2} \frac{x+1}{4x-3}


que nos dá

\lim_{x \to 2} \frac{x+1}{4x-3}.

O resultado deste limite é direto, pois não temos indeterminações. Assim

\lim_{x \to 2} \frac{x+1}{4x -3} = \frac{\lim_{x \to 2} x+ 1}{\lim_{x \to 2} 4x-3 } = \frac{2+1}{4 \cdot 2 -3} = \frac{3}{5}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: LIMITE

Mensagempor SILMARAKNETSCH » Sex Nov 09, 2012 12:08

agradeço demais depois vou tentar colocar mais alguns problemas que tem infinito para ver se consigo abraço!!! a maior caridade esta no ato de querer ajudar ganhei uma bolsa ENEM depois de 29 anos sem estudar faço administração mas a matemática esta sendo minha dificuldade se não aprender vou ficar de DP mas colocarei exercícios aqui e irei treinar trocando os numeros para estar fera na prova do fim do mes.
SILMARAKNETSCH
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Seg Out 29, 2012 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: administração EAD prouni deficiente físi
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?