• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Seno e cosseno

[Limite] Seno e cosseno

Mensagempor KleinIll » Qua Out 31, 2012 15:01

\lim_{x \rightarrow1} \left({x}^{3} - 1 \right)\left[ sen(\frac{1}{x - 1}) + cos(\frac{3}{x}) + 10 \right]

Alguém pode explicar como resolver?

Reposta: 0
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Limite] Seno e cosseno

Mensagempor young_jedi » Qua Out 31, 2012 20:33

temos que para qualquer valor de x a expressção nos temos certeza que sen\left(\frac{1}{1-x}\right) esta entre -1 e 1 e cos\left(\frac{3}{x}\right) também ou seja:

-1\leq sen\left(\frac{1}{1-x}\right)\leq1

-1\leq cos\left(\frac{3}{x}\right\rihgt)\leq1

ou seja para quaquer valor de x maior que 1

(x^3-1)(-1-1+10)<(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right)+10\right]

e

(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]<(x^3-1)(1+1+10)

ou seja

para valores de x>1 nos temos

(x^3-1)8<(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]<(x^3-1)12

mais nos temos que

\lim_{x\rightarrow1_+}(x^3-1).8=0

e

\lim_{x\rightarrow1_+}(x^3-1).12=0

então pelo teorema do confronto

\lim_{x\rightarrow1_+}(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]=0

de forma semelhante nos temos que para x<1

(x^3-1)(-1-1+10)>(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right)+10\right]

e

(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]>(x^3-1)(1+1+10)

ou seja

para valores de x<1 nos temos

(x^3-1)8>(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]>(x^3-1)12

mais nos temos que

\lim_{x\rightarrow1_-}(x^3-1).8=0

e

\lim_{x\rightarrow1_-}(x^3-1).12=0

então pelo teorema do confronto

\lim_{x\rightarrow1_-}(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]=0

se os limites laterais existem e ambos são iguais a zero então o limite é igual a zero
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite] Seno e cosseno

Mensagempor e8group » Qua Out 31, 2012 20:34

Desconsidere , já foi respondido .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.