• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada de Função Exponencial] Problema de Economia

[Derivada de Função Exponencial] Problema de Economia

Mensagempor Ronaldobb » Seg Out 29, 2012 09:38

A demanda por uma nova linha de computadores, t meses após seu lançamento no mercado, é estimada por:

D(t)=2000-1500{e}^{-0.05t}

(t>0)

a) A que nível se espera que a demanda se estabilize?
b) Encontre a taxa da demanda após o décimo mês.
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivada de Função Exponencial] Problema de Economia

Mensagempor e8group » Seg Out 29, 2012 11:54

Bom dia , na letra A , não utilizei derivadas , apenas utilizei limites .

Solução :


Vamos reescrever sua função como ,


D(t) = 2000 - \frac{1500}{e^{0.05t}} .


Calculando o limite quando t \to +\infty ,


\lim_{t\to +\infty} D(t) =  2000 .

Perceba que ,

\frac{1500}{e^{0.05t}} é sempre positiva , o que significa que a demanda se estabilize quando D(t) estar em uma "vizinhaça " do 2000 , à esquerda . Sendo assim , a melhor aproximação do 2000 será quando ,

e^{0.05t} > 1500 pois \frac{1500}{e^{0.05t}} \in (0 ,1 )  \iff  e^{0.05t} > 1500 .


Ou seja , quando e^{0.05t} > 1500 \implies  ln( e^{0.05t}) > ln(1500) \implies t > \frac{ln(1500)}{0.005} \approx146 ,3


Isso que dizer que , a demanda vai estabilizar quando t > 146 .


Calculando o limite quando t tende a 146 , veja :


http://www.wolframalpha.com/input/?i=li ... s+t+to+146


A media q t vai aumentando , a função fica mais próximo do 2000 ,D < 2000 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)