• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Dupla] 2

[Integral Dupla] 2

Mensagempor gedersoncruz » Dom Out 21, 2012 21:27

Fiz uma transformação em coordenadas polares e obtive esta integral, porém não consegui resolvê-la... estou em dúvida se há a possibilidade de usar alguma identidade trigonométrica neste caso para poder simplificar a equação. Tentei fazer sem simplificar e obtive o resultado distinto da resposta que é 8\pi\sqrt[]{2} .Se alguém puder ajudar, agradecido.

\int_{0}^{2\pi}\int_{0}^{2}(8-2r^2cos^2\Theta-4r^2sen^2\Theta).\sqrt[]{2}.r.dr.d\Theta
gedersoncruz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 20, 2012 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Dupla] 2

Mensagempor young_jedi » Dom Out 21, 2012 22:24

da pra fazer assim

\int_{0}^{2\pi}\int_{0}^{2}(8-2r^2cos^2\theta-2r^2sen^2\theta-2r^2sen^2\theta)\sqrt{2}.r.dr.d\theta

\int_{0}^{2\pi}\int_{0}^{2}(8-2r^2(cos^2\theta+sen^2\theta)-2r^2sen^2\theta)\sqrt{2}.r.dr.d\theta


\int_{0}^{2\pi}\int_{0}^{2}(8-2r^2-2r^2sen^2\theta)\sqrt{2}.r.dr.d\theta

\int_{0}^{2\pi}\int_{0}^{2}(8-2r^2-2r^2sen^2\theta)\sqrt{2}.r.dr.d\theta

mas temos que

cos2\theta=cos^2\theta-sen^2\theta

e

1=cos^2\theta+sen^2\theta

subtrainco a primeira da segunda

1-cos2\theta=2sen^2\theta

sen^2\theta=\frac{1-cos2\theta}{2}

substituindo na integral

\int_{0}^{2\pi}\int_{0}^{2}\left(8-2r^2-2r^2\left(\frac{1-cos2\theta}{2}\right)\right)\sqrt{2}.r.dr.d\theta

\int_{0}^{2\pi}\int_{0}^{2}\left(8-2r^2-r^2+r^2cos2\theta\right)\sqrt{2}.r.dr.d\theta

\int_{0}^{2\pi}\int_{0}^{2}\left(8-3r^2+r^2cos2\theta\right)\sqrt{2}.r.dr.d\theta

acredito que assim é mais facil de resolver
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.