1) Pontos minimos e/ou maximos
2) A concavidade é voltada para cima ou para baixo? diga os intervalos que isso acontece.

Sou usuário frequente do forum, e sei que precisa dizer até aonde chegou, mas eu me confudi todo e fiz de varias formas.
obs: se tiver algum erro no enunciado, por favor me avise, pois não me lembro 100%.
O primeiro passo é derivar, fica
, tu considera a derivada como f'(x), a partir dai, não sei se faço f'(x)=0 ou se f'(0), preciso fazer o quadro dos sinais?alguém poderia me ajudar?
obrigado!
----
editado:
Utilizando uma sugestão do forum fiz o grafico pelo: http://www.wolframalpha.com/input/?i=x% ... 2+%2B3x+-1, então acredito que acertei meu passo até descobrir as raizes da derivada, dando os pontos minimo 1 e ponto maximo 3.... So que a partir dai, comecei a tentar testar fazendo substituição e comecei a errar, dai não consegui chegar aos resultados.


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.