• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite]limite com raiz

[limite]limite com raiz

Mensagempor will94 » Sáb Set 15, 2012 00:02

Preciso resolver o seguinte limite, só que sem L'Hôpital porque na prova o professor falou que vai cair uma questão aberta parecida ou mais difícil na prova não podendo derivar, e preciso treinar o máximo de maneiras possíveis de resolver.
Acredito que tenha que fatorar a função, só que não obtive o resultado que é 2/3.

\lim_{x \rightarrow 1}\frac{\sqrt[3]{x}-1}{\sqrt[2]{x}-1}

Obrigado desde já :-D
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [limite]limite com raiz

Mensagempor MarceloFantini » Sáb Set 15, 2012 07:53

Seria interessante se pudéssemos retirar as raízes. Vamos tentar tomar x=t^3. Tiramos a raíz do numerador mas continuamos com \sqrt{t^3} no denominador. Se tentarmos x=t^2 também teremos o mesmo problema. Agora, o que poderíamos usar para cancelar ambos 2 e 3? O produto deles! Se x=t^6, então teremos

\lim_{x \to 1} \frac{\sqrt[3]{x} -1}{\sqrt{x} -1} = \lim_{t \to 1} \frac{t^2-1}{t^3-1}.

Daqui você já deve saber resolver.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [limite]limite com raiz

Mensagempor will94 » Sáb Set 15, 2012 17:48

Muito obrigado :-D
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.