• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral limitada pelas curvas

integral limitada pelas curvas

Mensagempor ricardosanto » Dom Set 02, 2012 01:11

Enunciado: Calcule usando integral a região limitada pelas curvas.

2)y=9x², y=0 e x=2

eu fiz a 5º da seguinte forma:
5)y=x, y=4x²| <=> 4x²=x <=> 4x²-x=0, daí eu resolvi e encontrei os dois x, q por sua vez, são os limites desta integral ,
e faço as integrais e depois subtraio as áreas.

minha dúvida é: o que devo fazer para encontrar os limites quando a questão possui 3 igualdades?

Muito obrigado pela oportunidade de postar minhas dúvidas
Editado pela última vez por ricardosanto em Dom Set 02, 2012 12:52, em um total de 1 vez.
ricardosanto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Seg Abr 16, 2012 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: integral limitada pelas curvas

Mensagempor MarceloFantini » Dom Set 02, 2012 15:31

A reta x=2 é paralela ao eixo y. Ela encontra a parábola no ponto y=9 (2)^2 = 36. Portanto você pode fazer \int_0^2 9 x^2 \, dx para calcular a área limitada pela curva.

No outro, os pontos de interseção tem abscissas x = 0 e x= \frac{1}{4}, então para calcular a área faça \int_0^{\frac{1}{4}} x - 4x^2 \, dx. A razão de ser x-4x^2 é que no intervalo [0,1] temos que 4x^2 \leq x, ou seja, a bissetriz dos quadrantes ímpares está acima da parábola.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.